

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 709

AN EVOLUTIONARY APPROACH TO PARALLEL COMPUTING

USING GPU

Mohammad Naeemullah

Maulana Azad College of Arts Science & Commerce

Rauza Bagh, Aurangabad

Received: 20 August 2012

Accepted: 28 August 2012

A few years, the programmable graphics processor unit has evolved into an absolute High

performance computing. Simple data-parallel constructs, enabling the use of the GPU as a

streaming coprocessor. A compiler and run time system that abstracts and virtualizes many

aspects of graphics hardware. Commodity graphics hardware has rapidly evolved from being

a fixed-function pipeline into having programmable vertex and fragment processors. While

this new programmability was introduced for real-time shading, it has been observed that

these processors feature instruction sets general enough to perform computation beyond the

domain of rendering. Proposed research work is a translation of share memory program to

graphics processing unit for regular loop and irregular loop in parallelism. The them of this

translation is to make the efficient for reduce the execution time for the huge amount of data

processing for such a application . An analysis of the effectiveness of the Graphics

Processing Unit as a computing device compared to the Central processing Unit , to

determine when the GPU can produce outstanding result rather than the CPU for a

particular algorithm for Application.

To achieve good performance, our translation scheme includes efficient management of

shared data as well as advanced handling of irregular accesses.

Keywords: Share Memory Programming Model, GPU, Parallel Computation, Load transfer

Abstract

Abstract

http://www.srjis.com/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 710

INTRODUCTION

In today’s wired world, person don't want to spend more time to execute the application on

computer. Everyone is interested to get the fast response from computer for this purpose

evolution of High Performance Computing.

 Less execution time is need of society whenever large amount of data processing .

There are number of situations where only certain less execution time are require to allowed

to use particular application. Such as Drawing image after processing of data .

GPU have recently Known as general purpose High-performance computing Component .

Programming for GPU is to difficult ,compared to programming general-purpose CPU and

parallel programming models such as share memory programming model . The goal of this

conversion is to further reduce execution time and make existing share memory

programming applications amenable to execution on GPU. Share memory programming

model. OpenMP [1] has established itself as an important method and language extension for

programming shared-memory parallel computers.

While a GPGPU provides an inexpensive, highly parallel system to application developers,

its programming complexity poses a significant challenge for developers. There has been

growing research and industry interest in lowering the barrier of programming these devices.

There are several benefits of share memory programming models a programming paradigm

for GPU.

• Share memory programming mode is efficient at expressing loop-level parallelism in

applications, which is an target for utilizing GPU is efficiently highly parallel computing

units for data parallel computations.

• The concept of a leader thread and a group of flower threads in share memory

programming model fork-join model represents well the relationship between the leader

thread running in a CPU and a group of threads in a GPU device.

• Parallelization of applications, which is one of share memory programming model features,

can add the same benefit to GPU programming model.

The GPU programming model provides a general-purpose multi-threaded Single

Instruction,Multiple Data (SIMD) model for implementing general-purpose computations on

GPUs. Although the unified processor model in GPU[14,16] architectures for better

programmability, its unique memory architecture is exposed to programmers to some extent.

Therefore, the manual development of high-performance codes in GPU programming model

is more involved than in other parallel programming models such as share memory

programming model.

http://www.srjis.com/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 711

In this Research, developed an CPU parallel computing to GPU parallel computing converter

to extend the ease of creating parallel applications with share memory programming to GPU

architectures. Due to the similarity between share memory programming and GPU

programming models, we were able to convert hare memory parallelism, basically loop-level

parallelism, into the forms that best express parallelism in GPU.

Performance gaps are due to architectural differences between traditional shared-memory

multiprocessors (SMP), implemented by share memory programming, and stream

architectures,accepted by most GPU[14,16].

Most existing share memory programs were tuned to more efficient for fast access to

regular, consecutive elements of the data stream.

In GPU architectures, optimization techniques designed for CPU based algorithms may not

perform well [7]. Also, GPU having big problem in handling irregular applications than

SMPs, because of the stream architectures’ preference for regular access patterns.

RELATED WORK

GPU programming model , programming GPU was very difficult , requiring deep

knowledge of the underlying hardware and graphics programming interfaces.

Although the GPU programming model provides improved programmability, achieving high

performance with GPU parallel programs is still difficult. Several studies have been

conducted to develop the performance of GPU applications. In these contributions,

optimizations were performed manually.

For the automatic optimization of GPU programs, a compile time transformation scheme [2]

has been developed, which finds program transformations that can lead to efficient global

memory access. The proposed compiler framework optimizes affine loop nests using a

polyhedral compiler model. By contrast, our compiler framework optimizes irregular loops,

as well as regular loops.

Moreover, in propose research framework performs well on actual benchmarks as well as on

GPU functions. GPU-lite [18] is another translator, which generates codes for optimal tiling

of global memory data. GPU-lite relies on information that a programmer provides via

annotations, to perform transformations. Our approach is similar to GPU-lite in that we also

support special annotations provided by a programmer. In our compiler framework,

however,the necessary information is automatically extracted from the OpenMP directives,

and the annotations provided by a programmer are used for fine tuning.

OpenMP is an industry standard directive language, widely used for parallel programming

on shared memory systems. Due to its well established model and convenience of

http://www.srjis.com/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 712

incremental parallelization, the share memory programming model has been ported to a

variety of platforms. Previously, we have developed compiler techniques to translate share

memory applications into a form suitable for execution on a Software Distributed Shared

Memory (DSM) system

[10, 11] and another compile-time translation scheme to convert share memory programs

into MPI message-passing programs for execution on distributed memory systems [3].

Recently, there have been several efforts to map share memory to Cell architectures [12, 19].

Our approach is similar to the previous work in that share memory parallelism, specified by

work-sharing constructs, is exploited to distribute work among participating threads or

processes, and share memory data environment directives are used to map data into

underlying memory systems. However, different memory architectures and execution models

among the underlying platforms pose various challenges in mapping data and enforcing

synchronization for each architecture, resulting in differences in optimization strategies.

MCUDA [16] is an opposite approach, which maps the CUDA programming model onto a

conventional shared-memory CPU architecture.

MCUDA can be used as a tool to apply the GPU programming model[8,9] for developing

data-parallel applications running on traditional shared-memory parallel systems. By

contrast,our motivation is to reduce the complexity residing in the CUDA programming

model, with the help of OpenMP, which we consider to be an easier model. In addition to the

ease of creating CUDA programs with OpenMP, our system provides several compiler

optimizations to reduce the performance gap between hand-optimized programs and auto-

translated ones.

To bridge the specification gap between domain-specific algorithms and current GPU

programming models such as Brook, a framework for scalable execution of domain-specific

templates on GPUs has been proposed . This research work is the problem of partitioning the

computations that do not fit into GPU memory.

However, the architectural differences between GPU and vector systems [9] different

challenges in applying these techniques, leading to different directions; parallel loop e

xchange and loop overlapping transformations are techniques to expose stride-one accesses

in a program so that concurrent GPU threads can use the coalesced memory accesses to

optimize the off chip memory performance.

PROBLEM STATEMENT

This research introduces methods for transfer the load from Central processing Unit to

Graphics processing unit for High Performance Computing.

http://www.srjis.com/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 713

Parallel Computing is an area of High Performance Computing that has reduce the execution

time of Algorithm. Parallel computing always produce the less execution time compare to

serial computing.

To isolate CPU-intensive parallelization functionality into mostly independent logical

threads, tasks, or jobs, so that each core or CPU can get its thread(s),spreading the overall

load that load transfer from CPU to GPU.

A source to source to transformation of share memory programming model to graphics

processing unit programming model.

A growing demand for High performance computing is operation of huge amount of data

processing. In This work is to carry out the High Performance Computing using the parallel

programming model (share memory programming model) iterated execution of individual

thread on separate core ,which is in GPU.

This work revolve on totally based compilation system architecture. Our proposed block

diagram shows that how it works.

http://www.srjis.com/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 714

Fig 1: Block Diagram of Transfer the source code

For application such as large data processing , it would be useful to have a reduce the

execution time for getting the result as fast as possible compare to serial executation. A few

years, the programmable graphics processor unit has evolved into an absolute High

performance computing. Share memory programming is an Application Program Interface

(API), jointly defined by a group of major computer hardware and software vendors.

OpenMP provides a portable, scalable model for developers of shared memory parallel

applications.

Geared to those who are new to parallel programming with Share memory programming.

Basic understanding of parallel programming in C assumed. For those who are unfamiliar

with Parallel Programming in general, they have to use GPU as a parallel programming.

Share memory programming provides a standard among a variety of shared memory

architectures/platforms. Its very difficult to write a program for graphics processing unit for

that purpose , our proposed research work helpful for use the GPU.

 PROBLEM SOLUTION

Solution of our problem statement ,we have uses following steps. , method based on

compilation system. More focus on loop level parallelism and data parallelism. For data

parallelism we have to use Array privatization concept, because OpenMP is share memory

programming model.

Figure 1 shows the example of CPU source code which is execute on CPU , Bu

Fig 1: Example of CPU source code

http://www.srjis.com/

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 715

Fig 2: Example of GPU source code

CONCLUSION

Translating standard OpenMP programs into OpenGL based GPGPU programs. The

proposed translation aims at offering an easier programming model for general computing on

GPGPU. Baseline translation of existing OpenMP applications does not always yield good

performance; hence, optimization techniques designed for traditional shared-memory

multiprocessors do not translate directly onto GPU architectures.Efficient global memory

access is one of the most important targets of GPU optimizations, but simple transformation

techniquesare effective in optimizing global memory accesses. By applying OpenMP as a

front-end programming model, the proposed translator could convert the loop-level

parallelism of the OpenMP programming model into the data parallelism of the OpenGL

programming model in a natural way; hence, OpenMP appears to be a good t for GPGPUs.

Future work focuses on transformation techniques for efficient GPU global memory access.

Future work includes automatic tuning of optimizations to exploit shared memory and other

special memory units more aggressively.

References

1. Open MP [online]. available: http://openmp.org/wp/.

2. M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan.A compiler framework for optimization of affine loop nests for

GPGPUs. ACM International Conference on Supercomputing (ICS), 2008.

http://www.srjis.com/
http://openmp.org/wp/

SRJIS/MOHAMMAD NAEEMULLAH (709-716)

OCT-NOV, 2012, Vol. – I, Issue-III www.srjis.com Page 716

3. N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory model for scientific

algorithms on graphics processors. International Conference for High

PerformanceComputing, Networking, Storage and Analysys (SC), 2006.

4. Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann. Optimizing OpenMP programs

on software distributed shared memory systems. International Journel of Parallel

Programming (IJPP), 31:225249, June 2003.

5. Tim Davis. University of Florida Sparse Matrix Collection [online]. available:

http://www.cise.ufl.edu/

6. Data-Parallel Algorithms: Parallel Reduction [online]. available:

http://developer.download.nvidia.com/cuda/1 1/Website/Data-Parallel

Algorithms.html.

7. ATI, 2004. Hardware image processing using ARB fragment program.

http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples/ OpenGL/HW

Image Processing.html.

8. Brook, 2004. Brook project web page. http://brook.sourceforge.net

9. NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction [online]. available:

http://developer.download.nvidia.com/compute/ cuda/1 1/Website/Data-Parallel

Algorithms.html.

10. Tim Davis. University of Florida Sparse Matrix Collection [online] available:

http://www.cise.ufl.edu/research/sparse/matrices/

11. Sang Ik Lee, Troy Johnson, and Rudolf Eigenmann. Cetus - an extensible compiler

infrastructure for source-to-source transformation. International Workshop on

Languages and Compilers for Parallel Computing (LCPC), 2003.

http://www.srjis.com/
http://www.cise.ufl.edu/
http://brook.sourceforge.net/
http://developer.download.nvidia.com/compute/
http://www.cise.ufl.edu/research/sparse/matrices/

